

 DMODEM
 TABLE OF CONTENTS

October 15, 1990 DMODEM TABLE OF CONTENTS - PAGE i

 TABLE OF CONTENTS

 INTRODUCTION................................ 1

 ELECTRICAL INTERFACE 3

 SOFTWARE INITIALIZATION AND SETUP 9

 MAIN MENU...... 11

 APPENDIX A - XMODEM 17

 TABLES

 Table 1: G-96 I/O Controller Assy. #0000-22684
 Table 2: G-96 I/O Controller Assy. #0000-15686
 Table 3: Valid Baud Rates Used By DMODEM............ 13

 FIGURES

 Figure 1: G-96 I/O Controller Assy. #0000-2268..............5
 Figure 2: G-96 I/O Controller Assy. #0000-1568..............7

DMODEM TABLE OF CONTENTS

PAGE ii DMODEM September 15, 2005

 THIS PAGE LEFT INTENTIONALLY BLANK

 DMODEM
 INTRODUCTION

September 15, 2005 DMODEM PAGE 1

INTRODUCTION

DMODEM Version. 1.8 is a communications software package that is used with the Digalog Series 2030 Functional
Tester. This software allows the 2030 to communicate with another computer system through terminal emulation,
XModem, or Kermit.

DMODEM is invoked by typing "DMODEM" at the OS/9 prompt. The main menu may be called after the DMODEM
logo appears.

Prior to running DMODEM the serial port to be used should be configured as described in the Electrical Interface
section.

DMODEM TABLE OF CONTENTS

PAGE 2 DMODEM September 15, 2005

 THIS PAGE LEFT INTENTIONALLY BLANK

 DMODEM
SECTION - 2 ELECTRICAL INTERFACE

September 15, 2005 DMODEM PAGE 3

ELECTRICAL INTERFACE

The serial communication ports, T1 through T4, are at the rear of the equipment cabinet of the Series 2030 Functional
Tester. These serial channels support either RS-232 or RS-422 interfaces.

Ports T1 through T4 are configured as Data Communication Equipment (DCE). The pin-outs for both RS-232 and RS-
422 are shown below. Note that the communication ports do not support hardware handshaking (RTS/CTS). Data flow
control may be accomplished with the use of software handshaking (XON/XOFF).

Connector Pin-Out

RS-232 CONNECTOR PIN-OUT

 Pin Number Function

 1 Frame Ground
 2 Receive Data
 3 Transmit Data
 6 +12V through 5.6kΩ current limit resistor
 7 Signal Ground
 8 +12V through 5.6kΩ current limit resistor

RS-422 CONNECTOR PIN-OUT

 Pin Number Function

 1 Frame Ground
 2 - Receive Data
 3 - Transmit Data
 6 +12V through 5.6kΩ current limit resistor
 7 Signal Ground
 8 +12V through 5.6kΩ current limit resistor
 11 + Receive Data
 18 + Transmit Data

 NOTE: The connector supplied on the rear
 of the Digalog 2030 is a DB-25 female
 AMP# 745967-7.

DMODEM
ELECTRICAL INTERFACE SECTION - 2

PAGE 4 DMODEM September 15, 2005

The desired interface for each port may be selected via jumpers located on the G-96 I/O Controller PC board. The
jumper settings may be found in Tables 1 and 2 and the locations in Figures 1 and 2, respectively.

Table 1: G-96 I/O Controller Assy. #0000-2268

 PORT T1

 JUMPER NUMBER JP1 JP2 JP3 JP4 JP5

 RS-232 * - - - -

 RS-422 - * * * -

 PORT T2

 JUMPER NUMBER JP6 JP7 JP8 JP9 JP10

 RS-232 * - - - -

 RS-422 - * * * -

 PORT T3

 JUMPER NUMBER JP11 JP12 JP13 JP14 JP15

 RS-232 * - - - -

 RS-422 - * * * -

 PORT T4

 JUMPER NUMBER JP16 JP17 JP18 JP19 JP20

 DMODEM
SECTION - 2 ELECTRICAL INTERFACE

September 15, 2005 DMODEM PAGE 5

 RS-232 * - - - -

 RS-422 - * * * -

 * = shunt inserted

 - = shunt removed

DMODEM
ELECTRICAL INTERFACE SECTION - 2

PAGE 6 DMODEM September 15, 2005

Figure 1: G-96 I/O Controller Assy. #0000-2268

 DMODEM
SECTION - 2 ELECTRICAL INTERFACE

September 15, 2005 DMODEM PAGE 7

Table 2: G-96 I/O Controller Assy. #0000-1568

 PORT T1

 JUMPER NUMBER JP14 JP15 JP16 JP17 JP18

 RS-232 * - - - -

 RS-422 - * * * -

 PORT T2

 JUMPER NUMBER JP19 JP20 JP21 JP22 JP23

 RS-232 * - - - -

 RS-422 - * * * -

 PORT T3

 JUMPER NUMBER JP24 JP25 JP26 JP27 JP28

 RS-232 * - - - -

 RS-422 - * * * -

 PORT T4

 JUMPER NUMBER JP29 JP30 JP31 JP32 JP33

 RS-232 * - - - -

DMODEM
ELECTRICAL INTERFACE SECTION - 2

PAGE 8 DMODEM September 15, 2005

 RS-422 - * * * -

 * = shunt inserted

 - = shunt removed

 DMODEM
SECTION - 2 ELECTRICAL INTERFACE

September 15, 2005 DMODEM PAGE 9

Figure 2: G-96 I/O Controller Assy. #0000-1568

DMODEM
ELECTRICAL INTERFACE SECTION - 2

PAGE 10 DMODEM September 15, 2005

 DMODEM
SECTION - 2 ELECTRICAL INTERFACE

September 15, 2005 DMODEM PAGE 11

 THIS PAGE LEFT INTENTIONALLY BLANK

DMODEM
SOFTWARE INITIALIZATION AND SETUP SECTION - 3

PAGE 12 DMODEM September 15, 2005

SOFTWARE INITIALIZATION AND SETUP

When DMODEM is initially executed it will generate a system initialization file called "profile". This file will contain
all the default parameters required for user interaction. These parameters include the "Terminal Attention" character
as well as the terminal X-ON and X-OFF characters. The system initialization file will also contain a default data
transfer protocol of RAW DATA TRANSFER. This data transfer protocol is the first of six protocols available to the
user. The following table lists all of the system defaults set when DMODEM is initially run.

Default Parameters

 Parameter Function

 Attention Character..................... ^[
 Duplex.. Half
 Serial Port.................................... /T3
 Protocol....................................... Raw text transfer
 Baud Rate.................................... 9600
 Terminal X-ON............................. ^Q
 Terminal X-OFF........................... ^S
 Host X-ON................................... ^Q
 Host X-OFF.................................. ^S
 Block Size.................................... 128
 Capture Unit Size......................... 10
 Format... 8 bits
 Stop bits...................................... 1
 Parity.. None

There are one of six data transmission protocols available to the user. The following table lists the protocols currently
used.

Current Data Transmission Protocols

 1. Raw Text Transfer
 2. XMODEM Text Transfer
 3. XMODEM Binary Transfer
 4. Kermit Connect Mode
 5. Kermit 7-bit Transfer
 6. Kermit 8-bit Transfer

All of these protocols use 8-bit, no parity, and 1 stop bit format except for the Kermit 7-bit Mode which uses a format of
7-bits, no parity, and 2 stop bits. These parameters are set up automatically by DMODEM. ALL OF THE
PARAMETERS MUST MATCH BETWEEN BOTH SYSTEMS IN ORDER FOR PROPER COMMUNICATION.

 NOTE:The Capture Unit Size should be set to 100 for best operation of all the transmission

 DMODEM
SECTION - 3 SOFTWARE INITIALIZATION AND SETUP

September 15, 2005 DMODEM PAGE 13

protocols.

DMODEM
SOFTWARE INITIALIZATION AND SETUP SECTION - 3

PAGE 14 DMODEM September 15, 2005

SETTING A DATA TRANSMISSION PROTOCOL

Raw Text Transfer

The system initially defaults to the Raw Text Transfer protocol. To set the Raw Text Transfer the user must enter the
Modify Options menu and select the Change Protocol (selection 6 in the Modify Options menu) to Raw Text Transfer
(selection 1 in the change protocols).

Xmode Text Transfer

The Xmode corresponds to the Xmodem data transmission protocol. To set the Xmode Text Transfer the user must enter
the Modify Options menu, select the Change Protocol (selection 6 in the Modify Options menu) and select the Xmode
Text Transfer (selection 2 in the change protocols).

The best way to run this protocol is to set the error checking mode (selection 8 on the Modify Options menu) to
CHECKSUM. The standard protocol for Xmodem is receiver driven meaning the machine receiving data should be
started first. A 5 second delay should be allowed before transmitting from the sending machine. This allows the receiver
to set the CHECKSUM mode.

Xmode Binary Transfer

The Xmode corresponds to the Xmodem data transmission protocol. To set the Xmode Binary Transfer the user must
enter the Modify Options menu, select the Change Protocol (selection 6 in the Modify Options menu) and select the
Xmode Binary Transfer (selection 3 in the change protocols).

The best way to run this protocol is to set the error checking mode (selection 8 on the Modify Options menu) to
CHECKSUM. The standard protocol for Xmodem is receiver driven meaning the machine receiving data should be
started first. A 5 second delay should be allowed before transmitting from the sending machine. This allows the receiver
to set the CHECKSUM mode.

Kermit Connect Mode

The Kermit Connect Mode protocol is selected via the Change Protocol (selection 6) within the Modify Options menu by
choosing Kermit Connect Mode (selection 4). It is advised to edit the initialization file, "profile", and change the duplex
line from HALF to FULL. This is done because the half duplex mode will generate double characters on the terminal
screen.

Kermit 7-bit Transfer

To set the Kermit 7-bit Transfer the user must enter the Modify Options menu and select the Change Protocol (selection
6 in the Modify Options menu) to Kermit 7-bit Transfer (selection 5 in the change protocols). With this mode the target
machine must set its format to 7-bit, no parity, and 2 stop bits.

 DMODEM
SECTION - 3 SOFTWARE INITIALIZATION AND SETUP

September 15, 2005 DMODEM PAGE 15

Kermit 8-bit Transfer

To set the Kermit 8-bit Transfer the user must enter the Modify Options menu and select the Change Protocol (selection
6 in the Modify Options menu) to Kermit 8-bit Transfer (selection 6 in the change protocols).

DMODEM
SOFTWARE INITIALIZATION AND SETUP SECTION - 3

PAGE 16 DMODEM September 15, 2005

MAIN MENU

The Main Menu options are described below. Each option can be selected by entering the corresponding character or by
using the cursor keys. At the top of the Main Menu DMODEM displays what port it is using, the baud rate which that
port is transferring or receiving data, and whether the protocol is Kermit, Xmodem, or ASCII.

MODIFY OPTIONS

The Modify Options selection on the Main Menu should be chosen when first running DMODEM. This selection will
give the user another menu of choices which are used to modify the current options.

Display Current Options

By entering "D" at the Modify Options Menu the computer will display the current options which are presently set. If
the user desires to change these options most of them can be altered from the Modify Options Menu. To return to the
Modify Options Menu press any key.

Change X-ON X-OFF Characters

This option is used to change the characters used to start and stop transmission in the raw text mode and xmodem text
mode. Upon entering "1" at the Modify Options Menu a second menu will be displayed. The user then has the option of
changing the external control characters, the internal control characters, or the tape mode control characters. These
characters are entered as hexadecimal numbers.

Change EOL Mode

The options under this menu selection are used to change the way end of line (EOL) characters are handled for all types
of protocol. To change the EOL mode, enter "2" at the Modify Options Menu.

The first option (ASIS) specifies that no translation of EOL characters will occur on input or output. This option
should be used if straight binary transfer is desired.

The second option (CPM) specifies that a <NL> will be added after every <CR> on output. On input, the character
sequence <CR> <NL> will be changed to a <CR>. If only a <NL> is present without a <CR> then the <NL> will be left as it is.

The third option (UNIX) specifies that each <CR> will be changed to a <NL> on output. On input, each <NL> will be
changed to a <CR>.

The fourth option (SLOW) is used to add a delay after each output line. This allows a host, which has to do
"housekeeping" between lines, to keep up.

 DMODEM
SECTION - 4 MENU OPTIONS

September 15, 2005 DMODEM PAGE 17

The fifth option turns the slow mode off.

Change Capture Unit Size

This option is used to change the value of the capture unit size by entering a "3" at the Modify Options Menu. The unit
size is used with the transfer block size to define the buffer size for the Xmodem mode. The buffer size is equal to the
unit size multiplied by the transfer block size. The maximum unit size allowed is 100.

Change Attention Character

This option is used to define a character that when entered at the keyboard will cause a return to the Main Menu from
the Terminal mode. To redefine the attention character, enter "4" at the Modify Options Menu and then enter the
hexadecimal value of the desired character.

Change Transfer Block Length

This option changes the length of the Xmodem transfer block. To change this setting, enter "5" at the Modify Options
Menu. The maximum allowable block length is 1280.

Change Protocol

There are six different types of protocols for transferring data which were discussed earlier in the Setting A Data
Transmission Protocol section. To change the type of protocol, enter "6" at the Modify Options Menu and then select the
number of the desired protocol. If the user enters a <CR> without selecting a new protocol, the program will remain at
the type of protocol which is presently being used.

Toggle Error Check

DMODEM is capable of checking the data that is being transferred or received in two ways. These are CRC (Cyclic
Redundancy Check) and CHECKSUM. By entering "8" at the Modify Options Menu the user can toggle between these
two error checking options.

Toggle Debug Mode

The DMODEM program is written to allow the user to debug a problem in sending or receiving data. If there is a
problem the user can toggle the debug mode ON, and the program will print to the screen what it is doing. This
information can be used to find where the problems occur. If no problems are occurring, the debug mode can be left in
the OFF position. The program will then run in a 'silent' mode which does not display the steps that the computer is
taking. To toggle between the ON and OFF debug modes, enter "9" at the Modify Options Menu.

DMODEM
MENU OPTIONS SECTION - 4

PAGE 18 DMODEM September 15, 2005

Change Baud Rate

To change the baud rate, enter "B" at the Modify Options Menu. The current baud rate will be displayed, and the user
will be prompted to enter a new rate. If a <CR> is entered with no new rate, the baud rate will remain at its current
value. To change the baud rate, enter the new value followed by a <CR>. Table 3, shown on the following page, contains
the valid baud rates used by DMODEM.

 Table 3: Valid baud rates used by DMODEM.

 110
 300
 600
 1200
 2400
 4800
 9600
 19200

Toggle LF/CR

This option is used with the Terminal mode to add a line feed after the carriage return if desired. This is commonly
called "auto-line feed on carriage return". If this option is OFF when a <CR> is entered, a new line will not be started.
If this option is ON when a <CR> is entered, a new line will be started. To toggle this option ON or OFF, enter "C" at the
Modify Options Menu.

Change Port

As mentioned earlier, the port used defaults to T3. If the user would like to change the port used to a different serial
port, this option can be used. To change serial ports, enter "P" at the Modify Options Menu. The computer will then
ask the user to enter the new port. After the new port is entered, the user must also enter the desired baud rate for this
port.

 NOTE:If a <CR> is entered without designating a new port, the system will lock-up thus

requiring the user to reboot the computer.

Quit And Return To Main Menu

To return to the Main Menu from the Modify Options Menu, enter "Q".

RECEIVE MODE

The Receive Mode is used to receive data in one of six different communication protocols. These protocols are selected

 DMODEM
SECTION - 4 MENU OPTIONS

September 15, 2005 DMODEM PAGE 19

in the Modify Options Menu. In the raw text and Xmode protocols, the user has to define a storage file name. In the
Kermit protocols, the storage file name is defined by the received data. The user can view the received raw text data by
using the Main Menu View Buffer option or by reviewing the data file. In other data communication protocols, the
user has to access the data file from the current directory.

The system checks for communication errors. When using Xmode and Kermit protocols, the system will abort reception
after ten errors and exit to the Terminal Mode.

DMODEM
MENU OPTIONS SECTION - 4

PAGE 20 DMODEM September 15, 2005

SEND MODE

The Send Mode is used to send data files with one of six different communication protocols. The communication
protocol can be changed from the Modify Options Menu. The user has to designate which source file is to be sent for
each type of protocol.

The system checks for communication errors. The system will abort transmission on the first error and exit to the
Terminal Mode.

TERMINAL MODE

The Terminal Mode is used to configure the operation of the terminal as a dumb terminal for the remote system. The
user can exit this mode by entering <Ctrl> {attention character}. Recall that the attention character can be changed in
the Modify Options Menu.

DIAL PHONE NUMBER

The user can utilize the telephone link for data communication. This mode allows the user to enter a phone number to
access the specific data communication link. The user can abort this mode by entering a <CR> and the system will exit to
the Terminal Mode. If the phone number is not valid, the system will abort to the Terminal Mode.

HANG UP PHONE

This mode allows the user to disconnect the data communication link. The program will then go to the Main Menu.

VIEW BUFFER

This mode allows the user to view the received data in the buffer when using the raw text communication protocol.

FLUSH TEXT BUFFER

This mode clears the buffer contents and leaves the buffer open for further data reception under the current file name.

CLOSE BUFFER

This mode closes the current data buffer and saves its contents under the current file name.

KILL BUFFER

 DMODEM
SECTION - 4 MENU OPTIONS

September 15, 2005 DMODEM PAGE 21

This mode clears the buffer contents including the current file name.

FORK A SHELL

This mode allows the user to access a shell. The user is prompted with <Dmodem> as a shell prompt. The user can
switch back to the DMODEM Main Menu by entering <Ctrl> Z.

QUIT PROGRAM

This option is used to exit DMODEM.

DMODEM
MENU OPTIONS SECTION - 4

PAGE 22 DMODEM September 15, 2005

 THIS PAGE LEFT INTENTIONALLY BLANK

 DMODEM
 XMODEM

September 15, 2005 DMODEM APPENDIX A - PAGE 23

 1. DEFINITIONS
 2. TRANSMISSION MEDIUM LEVEL PROTOCOL
 3. MESSAGE BLOCK LEVEL PROTOCOL
 4. FILE LEVEL PROTOCOL
 5. DATA FLOW EXAMPLE INCLUDING ERROR RECOVERY
 6. PROGRAMMING TIPS.
 7. OVERVIEW OF CRC OPTION
 8. MESSAGE BLOCK LEVEL PROTOCOL, CRC MODE
 9. CRC CALCULATION
10. FILE LEVEL PROTOCOL, CHANGES FOR COMPATIBILITY
11. DATA FLOW EXAMPLES WITH CRC OPTION

-------- 1. DEFINITIONS.

 <soh> 01H
 <eot> 04H
| <ack> 06H
 <nak> 15H
 <can> 18H
 <C> 43H

-------- 2. TRANSMISSION MEDIUM LEVEL PROTOCOL

Asynchronous, 8 data bits, no parity, one stop bit.

 The protocol imposes no restrictions on the contents of the data being transmitted. No control characters are looked
for in the 128-byte data messages. Absolutely any kind of data may be sent - binary, ASCII, etc. The protocol has not
formally been adopted to a 7-bit environment for the transmission of ASCII-only (or unpacked-hex) data , although it
could be simply by having both ends agree to AND the protocol-dependent data with 7F hex before validating it. I
specifically am referring to the checksum, and the block numbers and their ones complement.
 Those wishing to maintain compatibility of the CP/M file structure, i.e. to allow modemming ASCII files to or from
CP/M systems should follow this data format:
 * ASCII tabs used (09H); tabs set every 8.
 * Lines terminated by CR/LF (0DH 0AH)
 * End-of-file indicated by ^Z, 1AH. (one or more)
 * Data is variable length, i.e. should be considered a
 continuous stream of data bytes, broken into 128-byte
 chunks purely for the purpose of transmission.
 * A CP/M "peculiarity": If the data ends exactly on a
 128-byte boundary, i.e. CR in 127, and LF in 128, a
 subsequent sector containing the ^Z EOF character(s)

DMODEM
XMODEM APPENDIX A

APPENDIX A - PAGE 24 DMODEM September 15, 2005

 is optional, but is preferred. Some utilities or
 user programs still do not handle EOF without ^Zs.
 * The last block sent is no different from others, i.e.
 there is no "short block".

-------- 3. MESSAGE BLOCK LEVEL PROTOCOL

 Each block of the transfer looks like:
<SOH><blk #><255-blk #><--128 data bytes--><cksum>
 in which:
<SOH> =01 hex
<blk #> = binary number, starts at 01 increments by 1, and wraps 0FFH to 00H (not to 01)
<255-blk #> =blk # after going through 8080 "CMA" instr, i.e. each bit complemented in the 8-bit block number.

Formally, this is the "ones complement".
<cksum> =the sum of the data bytes only. Toss any carry.

-------- 4. FILE LEVEL PROTOCOL
---- 4A. COMMON TO BOTH SENDER AND RECEIVER:

 All errors are retried 10 times. For versions running with an operator (i.e. NOT with XMODEM), a message is typed
after 10 errors asking the operator whether to "retry or quit".
 Some versions of the protocol use <can>, ASCII ^X, to
cancel transmission. This was never adopted as a standard, as having a single "abort" character makes the transmission
susceptible to false termination due to an <ack> <nak> or <soh> being corrupted into a <can> and cancelling transmission.
 The protocol may be considered "receiver driven", that is, the sender need not automatically re-transmit, although it
does in the current implementations.

---- 4B. RECEIVE PROGRAM CONSIDERATIONS:

 The receiver has a 10-second timeout. It sends a <nak> every time it times out. The receiver's first timeout, which
sends a <nak>, signals the transmitter to start. Optionally, the receiver could send a <nak> immediately, in case the
sender was ready. This would save the initial 10 second timeout.
However, the receiver MUST continue to timeout every 10 seconds in case the sender wasn't ready.
 Once into a receiving a block, the receiver goes into a one-second timeout for each character and the checksum. If the
receiver wishes to <nak> a block for any reason (invalid
header, timeout receiving data), it must wait for the line to clear. See "programming tips" for ideas
 Synchronizing: If a valid block number is received, it will be: 1) the expected one, in which case everything is fine; or
2) a repeat of the previously received block. This should be considered OK, and only indicates that the receivers <ack>
got glitched, and the sender re-transmitted; 3) any other block number indicates a fatal loss of synchronization, such as
the rare case of the sender getting a line-glitch that looked like an <ack>. Abort the transmission, sending a <can>

---- 4C. SENDING PROGRAM CONSIDERATIONS.

 While waiting for transmission to begin, the sender has only a single very long timeout, say one minute. In the

 DMODEM
APPENDIX A XMODEM

September 15, 2005 DMODEM APPENDIX A - PAGE 25

current protocol, the sender has a 10 second timeout before retrying. I suggest NOT doing this, and letting the protocol
be completely receiver-driven. This will be compatible with existing programs.
 When the sender has no more data, it sends an <eot>, and awaits an <ack>, resending the <eot> if it doesn't get one.
Again, the protocol could be receiver-driven, with the sender only having the high-level 1-minute timeout to abort.

-------- 5. DATA FLOW EXAMPLE INCLUDING ERROR RECOVERY

Here is a sample of the data flow, sending a 3-block message. It includes the two most common line hits - a garbaged
block, and an <ack> reply getting garbaged. <xx> represents the
checksum byte.

SENDER RECEIVER
 times out after 10 seconds,
 <--- <nak>
<soh> 01 FE -data- <xx> --->
 <--- <ack>
<soh> 02 FD -data- xx ---> (data gets line hit)
 <--- <nak>
<soh> 02 FD -data- xx --->
 <--- <ack>
<soh> 03 FC -data- xx --->
 (ack gets garbaged) <--- <ack>
<soh> 03 FC -data- xx ---> <ack>
<eot> --->
 <--- <ack>

-------- 6. PROGRAMMING TIPS.

* The character-receive subroutine should be called with a
parameter specifying the number of seconds to wait. The
receiver should first call it with a time of 10, then <nak> and try again, 10 times.
 After receiving the <soh>, the receiver should call the
character receive subroutine with a 1-second timeout, for the remainder of the message and the <cksum>. Since they are
sent as a continuous stream, timing out of this implies a serious like glitch that caused, say, 127 characters to be seen
instead of 128.

* When the receiver wishes to <nak>, it should call a "PURGE" subroutine, to wait for the line to clear. Recall the
sender tosses any characters in its UART buffer immediately upon
completing sending a block, to ensure no glitches were mis-
interpreted.
 The most common technique is for "PURGE" to call the
character receive subroutine, specifying a 1-second timeout, and looping back to PURGE until a timeout occurs. The
<nak> is then sent, ensuring the other end will see it.

* You may wish to add code recommended by John Mahr to your character receive routine - to set an error flag if the
UART shows framing error, or overrun. This will help catch a few more glitches - the most common of which is a hit
in the high bits of the byte in two consecutive bytes. The <cksum> comes out OK since counting in 1-byte produces the

DMODEM
XMODEM APPENDIX A

APPENDIX A - PAGE 26 DMODEM September 15, 2005

same result of adding 80H + 80H as with adding 00H + 00H.

 DMODEM
APPENDIX A XMODEM

September 15, 2005 DMODEM APPENDIX A - PAGE 27

-------- 7. OVERVIEW OF CRC OPTION

The CRC used in the Modem Protocol is an alternate form of block check which provides more robust error detection
than the original checksum. Andrew S. Tanenbaum says in his book, Computer Networks, that the CRC-CCITT used by
the Modem Protocol will detect all single and double bit errors, all errors with an odd number of bits, all burst errors of
length 16 or less, 99.997% of 17-bit error bursts, and 99.998% of 18-bit and longer bursts.

The changes to the Modem Protocol to replace the checksum with the CRC are straight forward. If that were all that we
did we would not be able to communicate between a program using the old checksum protocol and one using the new
CRC protocol. An initial handshake was added to solve this problem. The handshake allows a receiving program with
CRC capability to determine whether the sending program supports the CRC option, and to switch it to CRC mode if it
does. This handshake is designed so that it will work properly with programs which implement only the original
protocol. A description of this handshake is presented in section 10.

-------- 8. MESSAGE BLOCK LEVEL PROTOCOL, CRC MODE

 Each block of the transfer in CRC mode looks like:
<SOH><blk #><255-blk #><--128 data bytes--><CRC hi><CRC lo> in which:
<SOH> =01 hex
<blk #> =binary number, starts at 01 increments by 1, and wraps 0FFH to 00H (not to 01)
<255-blk #> =ones complement of blk #.
<CRC hi> =byte containing the 8 hi order coefficients of the CRC. <CRC lo>= byte containing the 8 lo order coefficients

of the CRC. See the next section for CRC calculation.

-------- 9. CRC CALCULATION
---- 9A. FORMAL DEFINITION OF THE CRC CALCULATION

To calculate the 16 bit CRC the message bits are considered to be the coefficients of a polynomial. This message
polynomial is first multiplied by X^16 and then divided by the generator polynomial (X^16 + X^12 + X^5 + 1) using
modulo two arithmetic. The remainder left after the division is the desired CRC. Since a message block in the Modem
Protocol is 128 bytes or 1024 bits, the message polynomial will be of order X^1023. The hi order bit of the first byte of
the message block is the coefficient of X^1023 in the message polynomial. The lo order bit of the last byte of the message
block is the coefficient of X^0 in the message polynomial.

DMODEM
XMODEM APPENDIX A

APPENDIX A - PAGE 28 DMODEM September 15, 2005

---- 9B. EXAMPLE OF CRC CALCULATION WRITTEN IN C

/*
This function calculates the CRC used by the "Modem Protocol" The first argument is a pointer to the message block.
The second argument is the number of bytes in the message block. The message block used by the Modem Protocol
contains 128 bytes.
The function return value is an integer which contains the CRC. The lo order 16 bits of this integer are the coefficients
of the CRC. The lo order bit is the lo order coefficient of the CRC.
*/

int calcrc(ptr, count) char *ptr; int count; {

 int crc, i;

 crc = 0;
 while(--count >= 0) {
 crc = crc ^ (int)*ptr++ << 8;
 for(i = 0; i < 8; ++i)
 if(crc & 0x8000)
 crc = crc << 1 ^ 0x1021;
 else
 crc = crc << 1;
 }
 return (crc & 0xFFFF);
 }

-------- 10. FILE LEVEL PROTOCOL, CHANGES FOR COMPATIBILITY
---- 10A. COMMON TO BOTH SENDER AND RECEIVER:

The only change to the File Level Protocol for the CRC option is the initial handshake which is used to determine if
both the sending and the receiving programs support the CRC mode. All Modem Programs should support the checksum
mode for compatibility with older versions. A receiving program that wishes to receive in CRC mode implements the
mode setting handshake by sending a <C> in place of the initial <nak>. If the sending program supports CRC mode it will
recognize the <C> and will set itself into CRC mode, and respond by sending the first block as if a <nak> had been
received. If the sending program does not support CRC mode it will not respond to the <C> at all. After the receiver has
sent the <C> it will wait up to 3 seconds for the <soh> that starts the first block. If it receives a <soh> within 3 seconds it
will assume the sender supports CRC mode and will proceed with the file exchange in CRC mode. If no <soh> is received
within 3 seconds the receiver will switch to checksum mode, send a <nak>, and proceed in checksum mode. If the receiver
wishes to use checksum mode it should send an initial <nak> and the sending program should respond to the <nak> as
defined in the original Modem Protocol. After the mode has been set by the initial <C> or <nak> the protocol follows the
original Modem Protocol and is identical whether the checksum or CRC is being used.

 DMODEM
APPENDIX A XMODEM

September 15, 2005 DMODEM APPENDIX A - PAGE 29

---- 10B. RECEIVE PROGRAM CONSIDERATIONS:

There are at least 4 things that can go wrong with the mode setting handshake.
 1. the initial <C> can be garbled or lost.
 2. the initial <soh> can be garbled.
 3. the initial <C> can be changed to a <nak>.
 4. the initial <nak> from a receiver which wants to receive in checksum can be changed to a <C>.

The first problem can be solved if the receiver sends a second <C> after it times out the first time. This process can be
repeated several times. It must not be repeated a too many times before sending a <nak> and switching to checksum mode
or a sending program without CRC support may time out and abort. Repeating the <C> will also fix the second problem if
the sending program cooperates by responding as if a <nak> were received instead of ignoring the extra <C>.

It is possible to fix problems 3 and 4 but probably not worth the trouble since they will occur very infrequently. They
could be fixed by switching modes in either the sending or the receiving program after a large number of successive
<nak>s. This solution would risk other problems however.

---- 10C. SENDING PROGRAM CONSIDERATIONS.

The sending program should start in the checksum mode. This will insure compatibility with checksum only receiving
programs. Anytime a <C> is received before the first <nak> or <ack> the sending program should set itself into CRC mode
and respond as if a <nak> were received. The sender should respond to additional <C>s as if they were <nak>s until the
first <ack> is received. This will assist the receiving program in determining the correct mode when the <soh> is lost or
garbled. After the first <ack> is received the sending program should ignore <C>s.

DMODEM
XMODEM APPENDIX A

APPENDIX A - PAGE 30 DMODEM September 15, 2005

-------- 11. DATA FLOW EXAMPLES WITH CRC OPTION
---- 11A. RECEIVER HAS CRC OPTION, SENDER DOESN'T

Here is a data flow example for the case where the receiver requests transmission in the CRC mode but the sender does
not support the CRC option. This example also includes various transmission errors. <xx> represents the checksum byte.

SENDER RECEIVER
 <--- <C>
 times out after 3 seconds,
 <--- <nak>
<soh> 01 FE -data- <xx> --->
 <--- <ack>
<soh> 02 FD -data- <xx> ---> (data gets line hit)
 <--- <nak>
<soh> 02 FD -data- <xx> --->
 <--- <ack>
<soh> 03 FC -data- <xx> --->
 (ack gets garbaged) <--- <ack>
 times out after 10 seconds,
 <--- <nak>
<soh> 03 FC -data- <xx> --->
 <--- <ack>
<eot> --->
 <--- <ack>

---- 11B. RECEIVER AND SENDER BOTH HAVE CRC OPTION

Here is a data flow example for the case where the receiver requests transmission in the CRC mode and the sender
supports the CRC option. This example also includes various transmission errors.
<xxxx> represents the 2 CRC bytes.

SENDER RECEIVER
 <--- <C>
<soh> 01 FE -data- <xxxx> --->
 <--- <ack>
<soh> 02 FD -data- <xxxx> ---> (data gets line hit)
 <--- <nak>
<soh> 02 FD -data- <xxxx> --->
 <--- <ack>
<soh> 03 FC -data- <xxxx> --->
 (ack gets garbaged) <--- <ack>
 times out after 10 seconds,
 <--- <nak>
<soh> 03 FC -data- <xxxx> --->
 <--- <ack>
<eot> --->
 <--- <ack>

 DMODEM
APPENDIX A XMODEM

September 15, 2005 DMODEM APPENDIX A - PAGE 31

 THIS PAGE LEFT INTENTIONALLY BLANK

 DMODEM

